
• “Everything should be as simple as possible, but
not simpler.” – Einstein

• Occam (of Razor fame – parsimony, economy,
succinctness in logic/problem-solving)

– “Entities should not be multiplied more than
necessary”

– “Of two competing theories or explanations, all
other things being equal, the simpler one is to be
preferred.”

• “All that is complex is not useful. All that is useful
is simple.” – Mikhail Kalashnikov (of AK-47 fame)

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

1

h
tt

p
s:

//
w

w
w

.n
p

r.
o

rg
/2

0
1

6
/0

4
/1

7
/4

7
4

5
2

5
3

9
2

/a
tt

en
ti

o
n

-s
tu

d
en

ts
-p

u
t-

yo
u

r-
la

p
to

p
s-

aw
ay

https://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

Announcements

• HW 5 Due Sunday night

• Fall recess, 10/14: no class

• Exam 1

2

4

5
https://www.cs.utexas.edu/users/fussell/courses/cs378-spring2012/lectures/cs378-13.pdf

https://www.cs.utexas.edu/users/fussell/courses/cs378-spring2012/lectures/cs378-13.pdf

Sidebar – The Game Loop

The “Game Loop”

while game is running

process inputs

update game world

generate outputs

while(user doesn't exit)
check for user input
run AI
move enemies
resolve collisions
draw graphics
play sounds

end while

https://en.wikipedia.org/
wiki/Game_programming

http://www.informit.com/articles/article.
aspx?p=2167437&seqNum=3 6

https://en.wikipedia.org/wiki/Game_programming
http://www.informit.com/articles/article.aspx?p=2167437&seqNum=3

What are production/rule systems?

• Based on the current game state,
activate a set of rules,
pick/arbitrate from those based
on some heuristic (e.g. best
matches conditions)

• What were these traditionally
called?

• Use in Games Industry includes
Environment-sensitive dialog
generation (dynamic dialog gen)

• Pros:
– Don’t need to specify response to

every contingency

– Can respond to novel conditions

• Cons:
– Hard to author robust rule systems

– Emergence vs. over-engineering

– Hard to debug

7

What is Planning?

• Finding a sequence of actions to achieve a goal or accomplish a task
– Problems requiring deliberate thought ahead of time and a sequence of

actions

• Basic planning comes down to search:
– “behavior planning using A*”

• Given: state of the world, a goal, and models of actions
• Find: sequence of actions (a plan) that achieves the goal

– hierarchical task network planning
• Given: state of world, a list of tasks, and models of actions and methods
• Find: a sequence of actions (a plan) that achieves the tasks by recusively reducing

them into appropriate sub-tasks supported by primitive actions

8

Decision Making: Reactions vs Anticipation

• Shallowness & Realism
– All reactive techniques have the agent take next “best”/prescribed move, but don’t look further

into the future than the next state. Agents ought to be motivated by goals and able to consider
the effects of actions

• Adaptability
– Each technique is more general/adaptive than the last (Planning > Rule Systems > Behavior Trees

> FSMs > Decision Tree). To perform well in unanticipated situations is challenging

• Design Burden
– All decision making techniques impart an authoring burden on designers (FSMs: states

and transitions, B trees: nodes and structure, Rules: all conditions and each individual
rule, Planning: state rep and methods/operators).

– Knowledge engineering is a “hot potato” (can’t eat it, no free lunch)

9

Decision Making: Architectures…

One-pass

Two-pass

BDI

Brooks Subsumption Arch.

See Multiagent Systems 2nd ed, Gerhard Weiss 12

Decision Making:
Rule-Based Systems

2019-10-07 (and 09)

See M&F 5.8

13

Background

• Symbolic AI, “Expert Systems”
• Vanguard of AI research 70s + early 80s

– By mid 80’s, 2/3rd of Fortune 500 applied them to daily activities

• Used in some games, but not as common as FSMs or decision trees
– Reputation for inefficiency + challenge to impl.
– Similar behaviors achievable using Dtree/FSMs

• More robust than decision trees when worlds are unpredictable –
improvisation possible
– Recall, decision trees can be turned in to rules

• A form of reactive planning

14

Production/Rule System

• Consists of :
– Facts (database of knowledge, “working memory”, stores state)
– Rules (if/then constructs, with Boolean ops)
– May also include arbiter / conflict resolution scheme

• Like a FSM, but triggers based on DB/effects are more general
• Basic process / idea:

– Match: facts to if-part of rules (“pattern matching”)
• Rules with matching if’s become activated (“triggered”)

– Arbitrate: Choose an active rule to “fire”
• Can make change to facts or to world

– Repeat

15

Millington Figure 5.46

If enemiesInSight > 0 and patrolling THEN
remove(patrolling)
add(attackNearest) 16

Comments

• It is like writing a program and then allowing the
computer to decide which functions to call and
when

• Forward vs. Backward chaining
– B: theorem proving + planning

– Authors never saw backward in games

• DB rewriting rules vs Condition-Action Rules
– Rewrite Rules can change DB (+/- facts)

– Typically only for AI specific knowledge (e.g. patrol)

– Bias in GAI for condition-action rules (no rewrites)

17

DATABASE:

1500 kg fuel remaining

100 km from base

enemies sighted: Enemy 42, Enemy 21

currently patroling

(DB rewrite) RULE:

IF number of sighted enemies > 0

and currently patroling

THEN

remove(currently patroling)

add(attack first sighted enemy)

Declarative / Short-term Knowledge

• Stateable facts about the world

• (attribute value)

– (Captain-weapon rifle)

• value can be nested knowledge

– (Captain-weapon (rifle (ammo 36)))

18

DK: Facts

• Health(captain, 51)

• Health(Johnson, 38)

• Health(Sale, 42)

• Health(Whisker, 15)

• Holding(whisker, radio)

• Weapon(whisker, rifle)

• Weapon(johnson, pistol)

• Ammo(whisker, 36)

• Whisker

– Health: 51

– Holding: radio

• (captain
(weapon (rifle (ammo 36) (clips 2))
(health 51)
(position [21, 46, 92])

)

(radio (held-by whisker))

19

Procedural / Long-term Knowledge

• Knowledge about how we do the things we do

• IF (some facts about the world) THEN do (some action)

20

PK: Rules

• The If-clause contains items of data to match joined by any Boolean
operators

• IF whisker’s health < 15 AND Whisker holding radio
THEN Whisker: Radio-call “help!” on radio

• IF whisker’s health = 0 AND whisker holding radio
THEN
– Remove(whisker holding radio)
– Add(radio on ground)

• IF ?anyone health < 15
THEN …

21

Components

• Declarative / short-term knowledge (facts/KB)

• Procedural / long-term knowledge (actions)

• Selection knowledge (conditions, arbiter)

• Arbiter
– First applicable (FIFO on input order)

– Least recently used (LIFO on use order)

– Random

– Priority / Most specific conditions

– Dynamic Priority system

22

Unification

• Binding of vars in logical statements
– Same problem as in Planning

– (?persn health 0-15) AND (Radio (heldby ?persn))

• Allows rules to match in many situations
– See Russell & Norvig, Millington 5.8.7

• On complexity:
– N is number of items in DB,

– M is number of clauses in a pattern to match…

– O(nm), or maybe O(m log2 n), but generally O(nm)

23

Simple Algorithm

def ruleBasedIteration(database, rules):

for rule in rules:

bindings = []

if rule.ifClause.matches(database, bindings):

rule.action(bindings) #fire rule

return #exit; we’re done for this iteration

#if we get here, there’s no match; can do default

#or do nothing

return

class Rule:

ifClause

def action(bindings)

class Match:

def matches(DB, bindings)

24

Performance

• 90%+ goes to matching the rule conditions against working
memory

• Naïve approach of evaluating all rules each cycle is too slow

– May be necessary to support rules of arbitrary complexity (ie
function calls allowed in condition)

• Note that

– Number of changes to working memory on any given cycle is small

– Rule conditions can be associated with changes  event driven

25

RETE

• AI industry standard for rule matching

• Rule patterns represented in DAG

– Pattern nodes, Join nodes, Rule Nodes

• Each path represents set of patterns for one rule

– Fast matching (share evaluation)

– Graceful updates (add/remove facts)

– Determines which rules are active (all)

– Millington & Funge cover very well

26

Warning re IP

“You should also be careful of proprietary algorithms because
many are patented. Just because an algorithm is published
doesn’t mean it isn’t patented. You could end up having to pay a
license fee for your implementation, even if you wrote the source
code from scratch. We’re not lawyers, so we’d advise you to see
an intellectual property attorney if you have any

doubts.” – M&F

27

Rete Example

Swap Radio Rule:

IF

(?p1 (health < 15)) &&

(?p2 (health > 45)) &&

(radio (held-by ?p1))

THEN

remove(radio (held-by ?p1))

add(radio (held-by ?p2)

Change Backup Rule:

IF

(?p1 (health < 15)) &&

(?p2 (health > 45)) &&

(?p2 (is-covering ?p1))

THEN

remove(?p2 (is-covering ?p1))

add(?p1 (is-covering ?p2))

28

Swap Radio Change Backup

Pattern Nodes

Join Nodes

Rule Nodes

29
M&F Fig 5.48

Swap Radio Change Backup

(Captain (health 57) (is-covering Johnson))
(Johnson (health 38))
(Sale (health 42))
(Whisker (health 15) (is-covering Sale))
(Radio (held-by Whisker))

?p1 = Whisker ?p1 = Whisker ?p2 = Captain ?p1 = Johnson, ?p2 = Captain
OR

?p1 = Sale, ?p2 = Whisker

?p1 = Whisker, ?p2 = Captain

?p1 = Whisker,
?p2 = Captain

none

30

Pattern Nodes

• Database fed into top of network

• Pattern nodes find matches in database and pass them down
to join nodes

– When wildcards are used, variable bindings are also passed down

31

Pattern Nodes

• Pattern nodes keep record of matching facts for incremental
updating

• Find all matches instead of any match

– …and all variable-bindings

• E.g.

– ?person1 could be Whisker or Captain

– Not at the same time, but we pass both since we don’t know which is
useful

32

Join Nodes

• Make sure that both inputs have matched and any variables
agree

• When variable-bindings are used, join nodes identify all
acceptable combinations of bindings

• Not necessarily AND

– AND and XOR need extra support for unification

33

Rule Nodes

• All rules that receive input at bottom of network are triggered

• Arbiter determines which triggered rule goes on to fire

34

Updating the Network

• Could re-run each time with new database
– But usually, data changes minimally between iterations

• Nodes store data, so only need to process changes to database.
– Only update nodes that need it! Need remove/add.
– Effects are handled by walking down the network

• Removing facts from database:
– Request sent to pattern nodes
– If node has stored match, remove it and pass request down.
– Adding is basically the same.

• Adding is basically the same, looking for new matches.
– Most efficient to handle removes before adds.
– After updates, arbiter still decides among triggered rules

35

Rete Efficiency

• O(nmp) time efficiency

– n = # rules

– m = # clauses per rule

– p = # facts in database

• Unifying wildcards can take over if wildcard matches are large

• More memory usage  faster performance

36

Large Rule Sets

• Series of 2D turn-based war games
– Large rule set

– Each game in series required addition of many new rules: new features,
player requests, bug fixes

– Eventually, even RETE barfs

• Solution?
– Group rules, and make activation hierarchy

– Only rules in active sets are triggered

– Disabled rules have no chance to trigger

• See “agenda groups” in Drools

37

38
M&F 5.53

Justification in Expert Systems

• Common extension is audit trail

• Capture rule firing information

– The rule that fired

– The data that the rule matched

– Time stamp

• This information can be recursive

• Useful for debugging and justifying behavior

39

Rules: Advantages & Disadvantages

• Pros
– First technique we’ve seen that allows for improvisation / response to

novel conditions
– Another way to achieve reactive behaviors
– Don’t need to specify response to every contingency

• Cons
– Less designer control – possible to have unanticipated reactions
– Difficult to author and debug robust rule systems
– Difficult to make sequences of behaviors to achieve a goal
– Reputation for inefficiency + challenge to impl.
– Similar behaviors achievable using Dtree/FSMs

40

Resources

• A full source code implementation is provided on the M&F website,
with lots of comments

• Jess
– http://www.jessrules.com/

• Drools (/OptaPlanner)
– http://www.jboss.org/drools/
– http://www.optaplanner.org/
– http://www.javacodegeeks.com/2013/04/life-beyond-rete-r-i-p-rete-

2013.html

• Aima-java, under FOL (see Unifier.java)
– https://code.google.com/p/aima-java/

41

http://www.jessrules.com/
http://www.jboss.org/drools/
http://www.optaplanner.org/
http://www.javacodegeeks.com/2013/04/life-beyond-rete-r-i-p-rete-2013.html
https://code.google.com/p/aima-java/

Jess

(defrule change-backup
(< (health ?person1) 15)
(> (health ?person2) 45)
?cover <- (is-covering (?person2 ?person1))
==>
(//make a call to java//)
(retract ?cover)
(add (is-covering (?person1 ?person2)))

)

42

Soar
• A production system based on a theory of human

cognition

• Production system with fancy arbitration

– If two rules are active, Soar breaks the tie by firing more
rules to figure out which is better

– Forward mental simulation sp {hello-world

(state <s> ^type state)

-->

(write |Hello World|)

(halt)}

43

Soar

• Newell, Laird, & Rosenbloom (CMU)

• Represents Newell’s Unified Theory of Cognition

• Several decades in development

• Used in academic and military applications

• Previous Cognitive Psychology use

• Largest system: 8,000 rules

44

Decision Making:
(Blackboard) Communication

2019-10-09

M&F 5.9

DM: Communication. Why?

• Lens: Multi-agent system
– Collection of collaborative agents
– Communicate & cooperate
– Retain autonomy
– Need for negotiation / mutually acceptable agreements (cooperative

problem solving)

• Reasoning decomposition: distributed expertise
– Problems too large for single / centralized agent
– Reactive agents rarely communicate / collaborate
– Problem independence, partial result sharing

• Hope: Sum greater than parts

46

47

An agent is a computational entity such as a software program or a robot that is situated

in some environment and that to some extent is able to act autonomously in order to

achieve its design objectives. As interacting entities, agents do not simply exchange data but

are actively engaged in cooperative and competitive scenarios. They may communicate on

the basis of semantically rich languages, and they achieve agreements and make decisions

on the basis of processes such as negotiation, argumentation, voting, auctioning, and

coalition formation. As intelligent entities, agents act flexibly, that is, both reactively and

deliberatively, in a variety of environmental circumstances on the basis of processes such as

planning, learning, and constraint satisfaction. As autonomous entities, agents have far-

reaching control over their behavior within the frame of their objectives, possess decision

authority in a wide variety of circumstances, and are able to handle complex and

unforeseen situations on their own and without the intervention of humans or other

systems. And as entities situated in some environment, agents perceive their environment

at least partially and act upon their environment without being in full control of it.

See Multiagent Systems 2nd ed, Gerhard Weiss

Distributed Decision Making: A Recipe

1. Decompose the task

2. Allocate subtasks to “experts”

3. Await task accomplishment

4. Synthesize & Arbitrate results

Information sharing needed for most/all!

48

Communication Types

• Point to Point

– Experts directly communicate w/eachother

– Where have we seen this?

• Broadcast

– Send information to group of experts

– Talk about today.

• Mediated

– Experts go through facilitator/arbitrator

49

Communication Mediums

• Firm software interfaces

• Databases

• Protocol layers (e.g.: TCP/IP + JSON)

• Hierarchies (hybrids)

• Pub/Sub services

50

BLACKBOARD ARCHITECTURES

51

Daniel D. Corkill, 1991

Blackboard systems are not new technology. The first blackboard system, the Hearsay-II speech
understanding system [1], was developed nearly twenty years ago. While the basic features of
Hearsay-II remain in today’s blackboard systems, numerous advances and enhancements have
been made as a result of experience gained in using blackboard systems in widely varying
application areas. Unlike most AI problem-solving techniques that implement formal models,
the blackboard approach was designed as a means for dealing with ill-defined, complex
applications. Unconstrained by formal requirements, researchers and developers have had
considerable flexibility in inventing and applying advanced techniques to blackboard
architectures. However, the lack of formal specifications has also contributed to confusion
about blackboard systems and their proper place in the AI problem-solving toolkit. This
article describes the characteristics and potential of blackboard systems. I’ll discuss what a
blackboard system is (and is not) and why the use of blackboard-based problem solving is only
now emerging from the academic and research laboratory. Finally, I’ll discuss whether you
should consider using the blackboard approach for your applications and how to get started
using a blackboard approach.

52

Corkill, Daniel D. "Blackboard systems." AI expert 6.9

(1991): 40-47.

Blackboards

• Isn’t a decision making algorithm

• Architecture / coord. mechanism / pattern

• Problem: Multiple decision making systems (experts). How to
communicate (share data)?

53

On simplicity

• M&F: “Decision trees, state machines, and blackboard
architectures have all been used to control steering behaviors.
Blackboard architectures, in particular, are suited to
cooperating steering behaviors; each behavior is an expert
that can read (from the blackboard) what other behaviors
would like to do before having its own say.”

54

On reusability

• M&F: “The most sensible approach is to decouple the data
that behaviors need from the tasks themselves. We will do this
by using an external data store for all the data that the
behavior tree needs. We’ll call this data store a blackboard. […]
For now it is simply important to know that the blackboard can
store any kind of data and that interested tasks can query it
for the data they need. Using this external blackboard, we can
write tasks that are still independent of one another but can
communicate when needed.”

55

Example

class MoveTo (Task):
The blackboard we’re using
blackboard

def run():
target = blackboard.get(’target’)
if target:

character = blackboard.get(’character’)
steering.arrive(character, target)
return True

else:
return False

M&F 5.4 56

M&F Fig 5.36 57

Basic BB Architecture

• 3 main parts:
– Experts

– BB

– Arbiter

• Other:
– Action history

– Scheduled
Actions

Millington & Funge, Figure 5.54
58

BB Data Format

• Often uses application-specific organization

• Highly domain-dependent
– 3D locations, maneuver (steering) info

– FOL strings (flat, hierarchical)

– Polymorphic data types

• Three typical features:
– Value (e.g. 3)

– Type (e.g. float)

– Semantic Information (e.g. lives remaining)

59

Information on the BB

• Shared data

• Present task of each expert

• Current state of solution

• Intermediate results

• Next subproblems to be solved

• Requests for help

• Action scheduling

• E.g. Steering:
– 3D locations

– combinations of maneuvers

– animations.

• E.g. Decision making:
– game state

– position of enemies or resources

– internal state of a character

– targets

– strategies

60

BB Arbiter in Control

• Advertises next problems to be solved

• Checks on progress of experts

• Assign pending problems

• Monitor change

– Polling vs Observer patterns

– Can notify experts of relevant changes

61

BB Experts in Control

• On each decision making cycle

– Experts look at BB, indicate interest (e.g. numeric insistence value)

– Arbiter selects an expert to have control

– Expert does work and/or modifies blackboard

– Expert relinquishes control

62

BB Uses

• Conflict detection

– Task level

– (incompatible) solution level

– Action level

• Potential actions, along with a set of agreement flags

• Task sharing

• Result / information sharing

– Includes both partial and complete results

63

Is a BB?

• RBS?
– Experts: rules

– BB: Facts DB

– Arbiter: which rule(s) to fire

• FSMs?
– Subset of RBS

– Experts: transitions (rewrite state)

– BB: current state + related info

– Arbiter: which transition(s) to fire

64

BB Pros and Cons

• Pro:
– Flexible, allowing for comm. + coop.; (n bb’s)
– Independent of cooperation strategy
– Does not restrict internal structure of agent

• Con
– Management code
– Complicated data structures
– Centralized structure (single point of failure)
– System bottleneck

• Have a bad rep among game+academic AI.
But they’re used anyway, and “shall not be
named”

65

